Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis.

نویسندگان

  • Liming Xiong
  • Hojoung Lee
  • Manabu Ishitani
  • Yuko Tanaka
  • Becky Stevenson
  • Hisashi Koiwa
  • Ray A Bressan
  • Paul M Hasegawa
  • Jian-Kang Zhu
چکیده

Low temperature, drought, and high salinity induce the expression of many plant genes. To understand the mechanisms for the transcriptional activation of these genes, we conducted a reporter gene-aided genetic screen in Arabidopsis. Seven allelic mutations in the FIERY2 (FRY2) locus result in significant increases in the expression of stress-responsive genes with the DRE/CRT (drought-responsive/C-repeat) cis element but non-DRE/CRT type stress-responsive genes were less affected. The specific regulation of DRE/CRT class of genes by FRY2 appears to be caused by repression of stress induction of the upstream CBF/DREB transcription factor genes. fry2 mutants show increased tolerance to salt stress and to abscisic acid during seed germination but are more sensitive to freezing damage at the seedling stage. FRY2/CPL1 encodes a novel transcriptional repressor harboring two double-stranded RNA-binding domains and a region homologous to the catalytic domain of RNA polymerase II C-terminal domain phosphatases found in yeast and in animals that regulate gene transcription. These data indicate that FRY2 is an important negative regulator of stress gene transcription and suggest that structured RNA may regulate hormone and stress responses in plants as it does in animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses

AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...

متن کامل

MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis.

The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to func...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions.

In plants, abiotic stresses induce various physiological changes and growth inhibition that result in adaptive responses to these stresses. However, little is known about how such stresses cause plant growth inhibition. Many genes have been reported to be repressed in plants under abiotic stress conditions. ZPT2 (for petunia [Petunia hybrida] zinc-finger protein 2)-related proteins with two Cys...

متن کامل

A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 16  شماره 

صفحات  -

تاریخ انتشار 2002